Mixed analog-digital VLSI devices and technology /

Improve your circuit-design potential with this expert guide to the devices and technology used in mixed analog-digital VLSI chips for such high-volume applications as hard-disk drives, wireless telephones, and consumer electronics. The book provides you with a critical understanding of device model...

Full description

Saved in:
Bibliographic Details
Main Author: Tsividis, Yannis
Format: Electronic eBook
Language:English
Published: River Edge, NJ : World Scientific, ©2002.
Subjects:
Online Access:CONNECT
Table of Contents:
  • Ch. 1. Introduction: mixed analog-digital chips. 1.1. The role and place of modern mixed analog-digital chips. 1.2. Advantages of mixing analog and digital circuits on the same chip. 1.3. Applications of MAD chips. 1.4. Obstacles in the design of MAD chips. 1.5. The aim and contents of this book
  • ch. 2. The MOSFET: introduction and qualitative view. 2.1. Introduction. 2.2. MOS transistor structure. 2.3. Assumptions about terminal voltages, currents, and temperature. 2.4. A qualitative description of MOSFET operation. 2.5. A fluid dynamical analog. 2.6. Complete set of characteristics. 2.7. Form of functional [symbol] dependence: practical limits for regions of inversion. 2.8. Factors affecting the extrapolated threshold voltage. 2.9. Other factors affecting the drain current
  • ch. 3. MOSFET DC modeling. 3.1. Introduction. 3.2. DC model for weak and for strong inversion. 3.3. Drain versus source. 3.4. Symmetric models. 3.5. General models and moderate inversion. 3.6. Mobility dependence on gate and substrate bias. 3.7. Temperature effects. 3.8. Small-dimension effects. 3.9. Breakdown. 3.10. The pMOS transistor. 3.11. Device symbols. 3.12. Model accuracy, parameter extraction, and computer simulation
  • ch. 4. MOSFET small-signal modeling. 4.1. Introduction. 4.2. Small-signal conductance parameters. 4.3. Expressions for small-signal conductance parameters in weak and in strong inversion. 4.4. Capacitance parameters. 4.5. Intrinsic cutoff frequency and limits of model validity. 4.6. The transistor at very high frequencies. 4.7. Noise. 4.8. General models and moderate inversion. 4.9. Parameter extraction for accurate small-signal modeling. 4.10. Requirements for good CAD models
  • ch. 5. Technology and available circuit components. 5.1. Introduction. 5.2. The n-well CMOS process. 5.3. BiCMOS processes. 5.4. Other silicon processes. 5.5. Sensors. 5.6. Trimming. 5.7. Tolerance and matching of electrical parameters. 5.8. Chip size and yield. 5.9. The influence of pads and package
  • ch. 6. Layout. 6.1. Introduction. 6.2. Relation of fabricated transistors to layout. 6.3. Transistor geometry and layout. 6.4. Layout for device matching and precision parameter ratios. 6.5. Layout for interference reduction. 6.6. Integrated-circuit design.