Short-Circuit Withstand Capability of Power Transformers.

Saved in:
Bibliographic Details
Main Author: Geißler, Daniel Hermann
Format: Electronic eBook
Language:English
Published: Göttingen : Cuvillier Verlag, 2016.
Subjects:
Online Access:CONNECT

MARC

LEADER 00000cam a2200000Mu 4500
001 mig00005474043
006 m o d
007 cr |n|---|||||
008 170909s2016 gw ob 000 0 eng d
005 20240619222708.0
019 |a 1003255518  |a 1264795591 
020 |a 3736983328 
020 |a 9783736983328  |q (electronic bk.) 
020 |z 9783736993327 
035 |a 1WRLDSHRon1003265414 
035 |a (OCoLC)1003265414  |z (OCoLC)1003255518  |z (OCoLC)1264795591 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d YDX  |d IDB  |d OCLCQ  |d EZ9  |d OCLCO  |d OCLCF  |d OCLCQ  |d LVT  |d OCLCQ  |d N$T  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB 
049 |a TXMM 
050 4 |a TK2551  |b .G457 2016eb 
082 0 4 |a 621.314  |2 23 
100 1 |a Geißler, Daniel Hermann. 
245 1 0 |a Short-Circuit Withstand Capability of Power Transformers. 
260 |a Göttingen :  |b Cuvillier Verlag,  |c 2016. 
300 |a 1 online resource (175 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
588 0 |a Print version record. 
505 0 |a Acknowledgments; Contents; Abstract; 1 Introduction; 1.1 Standardization of Short-Circuit Withstand Capability; 1.2 Thesis Objectives; 1.2.1 Current State of Science; 1.2.2 Buckling Analysis on Transformer Windings; 1.2.3 Characterization of Conductors; 1.2.4 Impact of Insulating Paper Aging; 2 Fundamentals; 2.1 Power Transformer Windings; 2.1.1 Winding Types; 2.1.2 Conductor Types; 2.1.3 Copper for Electric Applications; 2.2 Short-Circuit Considerations; 2.2.1 Short-Circuit Current; 2.2.2 Short-Circuit Forces; 2.2.3 Failures Modes; 2.3 Mechanics of Materials. 
505 8 |a 2.3.1 Elastic Behavior of Materials2.3.2 Theory of Plasticity; 2.3.3 Ramberg-Osgood Equation; 2.3.4 Strain Rate and Temperature Dependency of Copper; 2.4 Method of Finite Element Analysis; 2.4.1 Magnetic Formulation; 2.4.2 Structural Mechanics Formulation; 2.4.3 Coupling of the Magnetic and Mechanical Field; 2.4.4 Eigenvalue Buckling Analysis; 3 Buckling Analysis; 3.1 Analytical Approach; 3.1.1 Bending Stiffness of Conductors; 3.1.2 Antisymmetric Buckling; 3.1.3 Symmetric Buckling; 3.1.4 Transition from Buckling to Pure Bending; 3.1.5 Involving Elastoplastic Properties. 
505 8 |a 3.1.6 Dynamic Buckling Analysis3.1.6.1 Hydrodynamic Damping and Inertial Mass; 3.1.6.2 Governing Equation; 3.1.6.3 Mathieu Equation; 3.1.6.4 Stability Analysis; 3.2 Finite Element-Based Analysis; 3.2.1 Simplified CTC Model; 3.2.2 Strain Rate Estimation; 3.2.2.1 Elastic Vibration; 3.2.2.2 Elastoplastic Buckling; 3.2.3 Buckling of CTC Windings; 3.2.3.1 Geometry and FEA Setup; 3.2.3.2 Linear Analysis; 3.2.3.3 Nonlinear Analysis; 3.2.3.4 Modal Analysis; 4 Static Characterization of Conductors; 4.1 Testing Methods and Standards; 4.1.1 Tensile Test; 4.1.2 Three-Point Bending Test; 4.1.3 T-Peel Test. 
505 8 |a 4.1.4 Overlap Shear Test4.2 Preliminary Investigations; 4.2.1 Copper Characterization; 4.2.2 Validation of Simplified CTC Model; 4.2.3 Oil Impregnation Effects; 4.3 Stiffness Contribution of Insulating Paper; 4.3.1 Measurement Results; 4.3.2 Equivalent Stiffness Evaluation; 4.4 Impact of Insulating Paper Aging; 4.4.1 Accelerated Aging Procedure; 4.4.2 Bending Test Results; 4.4.3 Insulating Paper Characterization; 4.4.4 Tensile and Bending Test Correlation; 4.4.5 FEA-Based Failure Analysis; 4.5 Characterization of Epoxy Bonded CTCs; 4.5.1 Test Results; 4.5.2 Adhesive Layer Parameterization. 
505 8 |a 4.5.3 FEA Model Validation4.5.4 FEA Model for Bonded CTCs; 5 Dynamic Short-Circuit Forces Test Stand; 5.1 Design and Principal Functionality; 5.2 Deformation Measurement Systems; 5.2.1 Acceleration Sensors; 5.2.1.1 Immunity to Magnetic Fields; 5.2.1.2 Mounting to the Windings; 5.2.1.3 Signal Processing; 5.2.2 High-Speed Camera-Based Deformation Tracking; 5.2.2.1 Principal Functionality; 5.2.2.2 Marker Mounting and Image Calibration; 5.2.2.3 Displacement Calculation Algorithm; 5.2.3 Comparison of Both Systems; 5.3 Measurement Data Evaluation; 5.4 Experimental Results. 
500 |a 5.4.1 Testing Method Validation. 
504 |a Includes bibliographical references. 
500 |a EBSCO eBook Academic Comprehensive Collection North America  |5 TMurS 
500 |a EBSCO eBook EngineeringCore  |5 TMurS 
650 0 |a Electric transformers. 
650 0 |a Transformers. 
730 0 |a WORLDSHARE SUB RECORDS 
758 |i has work:  |a Short-circuit withstand capability of power transformers (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGHDtBxtbKYfJvqQVhdQpX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Geißler, Daniel Hermann.  |t Short-Circuit Withstand Capability of Power Transformers.  |d Göttingen : Cuvillier Verlag, ©2016  |z 9783736993327 
856 4 0 |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2130593&authtype=ip,sso&custid=s4672406  |z CONNECT  |3 eBooks on EBSCOhost  |t 0 
907 |a 4752319  |b 05-27-21  |c 07-06-20 
949 |a ho0 
994 |a 92  |b TXM 
998 |a wi  |d z 
999 f f |s af05c43d-fff6-4d65-9dd7-6b50bb9040da  |i c7024587-7907-4c02-8e01-2194ffa8c206  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 0  |e TK2551 .G457 2016eb  |h Library of Congress classification