Nonlinear fiber optics /

Since the 4th edition appeared, a fast evolution of the field has occurred. The fifth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure, as well as being used in the medical fi...

Full description

Saved in:
Bibliographic Details
Main Author: Agrawal, G. P. 1951-
Format: Electronic eBook
Language:English
Published: Oxford : Academic, 2013.
Edition:5th ed.
Series:Engineering professional collection
Subjects:
Online Access:CONNECT
Table of Contents:
  • Machine generated contents note: ch. 1 Introduction
  • 1.1. Historical Perspective
  • 1.2. Fiber Characteristics
  • 1.2.1. Material and Fabrication
  • 1.2.2. Fiber Losses
  • 1.2.3. Chromatic Dispersion
  • 1.2.4. Polarization-Mode Dispersion
  • 1.3. Fiber Nonlinearities
  • 1.3.1. Nonlinear Refraction
  • 1.3.2. Stimulated Inelastic Scattering
  • 1.3.3. Importance of Nonlinear Effects
  • 1.4. Overview
  • Problems
  • References
  • ch. 2 Pulse Propagation in Fibers
  • 2.1. Maxwell's Equations
  • 2.2. Fiber Modes
  • 2.2.1. Eigenvalue Equation
  • 2.2.2. Single-Mode Condition
  • 2.2.3. Characteristics of the Fundamental Mode
  • 2.3. Pulse-Propagation Equation
  • 2.3.1. Nonlinear Pulse Propagation
  • 2.3.2. Higher-Order Nonlinear Effects
  • 2.3.3. Raman Response Function and its Impact
  • 2.3.4. Extension to Multimode Fibers
  • 2.4. Numerical Methods
  • 2.4.1. Split-Step Fourier Method
  • 2.4.2. Finite-Difference Methods
  • Problems
  • References
  • ch. 3 Group-Velocity Dispersion.
  • Note continued: 3.1. Different Propagation Regimes
  • 3.2. Dispersion-Induced Pulse Broadening
  • 3.2.1. Gaussian Pulses
  • 3.2.2. Chirped Gaussian Pulses
  • 3.2.3. Hyperbolic-Secant Pulses
  • 3.2.4. Super-Gaussian Pulses
  • 3.2.5. Experimental Results
  • 3.3. Third-Order Dispersion
  • 3.3.1. Evolution of Chirped Gaussian Pulses
  • 3.3.2. Broadening Factor
  • 3.3.3. Arbitrary-Shape Pulses
  • 3.3.4. Ultrashort-Pulse Measurements
  • 3.4. Dispersion Management
  • 3.4.1. GVD-Induced Limitations
  • 3.4.2. Dispersion Compensation
  • 3.4.3.Compensation of Third-Order Dispersion
  • Problems
  • References
  • ch. 4 Self-Phase Modulation
  • 4.1. SPM-Induced Spectral Changes
  • 4.1.1. Nonlinear Phase Shift
  • 4.1.2. Changes in Pulse Spectra
  • 4.1.3. Effect of Pulse Shape and Initial Chirp
  • 4.1.4. Effect of Partial Coherence
  • 4.2. Effect of Group-Velocity Dispersion
  • 4.2.1. Pulse Evolution
  • 4.2.2. Broadening Factor
  • 4.2.3. Optical Wave Breaking
  • 4.2.4. Experimental Results.
  • Note continued: 4.2.5. Effect of Third-Order Dispersion
  • 4.2.6. SPM Effects in Fiber Amplifiers
  • 4.3. Semianalytic Techniques
  • 4.3.1. Moment Method
  • 4.3.2. Variational Method
  • 4.3.3. Specific Analytic Solutions
  • 4.4. Higher-Order Nonlinear Effects
  • 4.4.1. Self-Steepening
  • 4.4.2. Effect of GVD on Optical Shocks
  • 4.4.3. Intrapulse Raman Scattering
  • Problems
  • References
  • ch. 5 Optical Solitons
  • 5.1. Modulation Instability
  • 5.1.1. Linear Stability Analysis
  • 5.1.2. Gain Spectrum
  • 5.1.3. Experimental Results
  • 5.1.4. Ultrashort Pulse Generation
  • 5.1.5. Impact on Lightwave Systems
  • 5.2. Fiber Solitons
  • 5.2.1. Inverse Scattering Method
  • 5.2.2. Fundamental Soliton
  • 5.2.3. Second and Higher-Order Solitons
  • 5.2.4. Experimental Confirmation
  • 5.2.5. Soliton Stability
  • 5.3. Other Types of Solitons
  • 5.3.1. Dark Solitons
  • 5.3.2. Bistable Solitons
  • 5.3.3. Dispersion-Managed Solitons
  • 5.3.4. Optical Similaritons
  • 5.4. Perturbation of Solitons.
  • Note continued: 5.4.1. Perturbation Methods
  • 5.4.2. Fiber Losses
  • 5.4.3. Soliton Amplification
  • 5.4.4. Soliton Interaction
  • 5.5. Higher-Order Effects
  • 5.5.1. Moment Equations for Pulse Parameters
  • 5.5.2. Third-Order Dispersion
  • 5.5.3. Self-Steepening
  • 5.5.4. Intrapulse Raman Scattering
  • 5.5.5. Propagation of Femtosecond Pulses
  • Problems
  • References
  • ch. 6 Polarization Effects
  • 6.1. Nonlinear Birefringence
  • 6.1.1. Origin of Nonlinear Birefringence
  • 6.1.2. Coupled-Mode Equations
  • 6.1.3. Elliptically Birefringent Fibers
  • 6.2. Nonlinear Phase Shift
  • 6.2.1. Nondispersive XPM
  • 6.2.2. Optical Kerr Effect
  • 6.2.3. Pulse Shaping
  • 6.3. Evolution of Polarization State
  • 6.3.1. Analytic Solution
  • 6.3.2. Poincare-Sphere Representation
  • 6.3.3. Polarization Instability
  • 6.3.4. Polarization Chaos
  • 6.4. Vector Modulation Instability
  • 6.4.1. Low-Birefringence Fibers
  • 6.4.2. High-Birefringence Fibers
  • 6.4.3. Isotropic Fibers
  • 6.4.4. Experimental Results.
  • Note continued: 6.5. Birefringence and Solitons
  • 6.5.1. Low-Birefringence Fibers
  • 6.5.2. High-Birefringence Fibers
  • 6.5.3. Soliton-Dragging Logic Gates
  • 6.5.4. Vector Solitons
  • 6.6. Random Birefringence
  • 6.6.1. Polarization-Mode Dispersion
  • 6.6.2. Vector Form of the NLS Equation
  • 6.6.3. Effects of PMD on Solitons
  • Problems
  • References
  • ch. 7 Cross-Phase Modulation
  • 7.1. XPM-Induced Nonlinear Coupling
  • 7.1.1. Nonlinear Refractive Index
  • 7.1.2. Coupled NLS Equations
  • 7.2. XPM-Induced Modulation Instability
  • 7.2.1. Linear Stability Analysis
  • 7.2.2. Experimental Results
  • 7.3. XPM-Paired Solitons
  • 7.3.1. Bright-Dark Soliton Pair
  • 7.3.2. Bright-Gray Soliton Pair
  • 7.3.3. Periodic Solutions
  • 7.3.4. Multiple Coupled NLS Equations
  • 7.4. Spectral and Temporal Effects
  • 7.4.1. Asymmetric Spectral Broadening
  • 7.4.2. Asymmetric Temporal Changes
  • 7.4.3. Higher-Order Nonlinear Effects
  • 7.5. Applications of XPM
  • 7.5.1. XPM-Induced Pulse Compression.
  • Note continued: 7.5.2. XPM-Induced Optical Switching
  • 7.5.3. XPM-Induced Nonreciprocity
  • 7.6. Polarization Effects
  • 7.6.1. Vector Theory of XPM
  • 7.6.2. Polarization Evolution
  • 7.6.3. Polarization-Dependent Spectral Broadening
  • 7.6.4. Pulse Trapping and Compression
  • 7.6.5. XPM-Induced Wave Breaking
  • 7.7. XPM Effects in Birefringent Fibers
  • 7.7.1. Fibers with Low Birefringence
  • 7.7.2. Fibers with High Birefringence
  • Problems
  • References
  • ch. 8 Stimulated Raman Scattering
  • 8.1. Basic Concepts
  • 8.1.1. Raman-Gain Spectrum
  • 8.1.2. Raman Threshold
  • 8.1.3. Coupled Amplitude Equations
  • 8.1.4. Effect of Four-Wave Mixing
  • 8.2. Quasi-Continuous SRS
  • 8.2.1. Single-Pass Raman Generation
  • 8.2.2. Raman Fiber Lasers
  • 8.2.3. Raman Fiber Amplifiers
  • 8.2.4. Raman-Induced Crosstalk
  • 8.3. SRS with Short Pump Pulses
  • 8.3.1. Pulse-Propagation Equations
  • 8.3.2. Nondispersive Case
  • 8.3.3. Effects of GVD
  • 8.3.4. Raman-Induced Index Changes.
  • Note continued: 8.3.5. Experimental Results
  • 8.3.6. Synchronously Pumped Raman Lasers
  • 8.3.7. Short-Pulse Raman Amplification
  • 8.4. Soliton Effects
  • 8.4.1. Raman Solitons
  • 8.4.2. Raman Soliton Lasers
  • 8.4.3. Soliton-Effect Pulse Compression
  • 8.5. Polarization Effects
  • 8.5.1. Vector Theory of Raman Amplification
  • 8.5.2. PMD Effects on Raman Amplification
  • Problems
  • References
  • ch. 9 Stimulated Brillouin Scattering
  • 9.1. Basic Concepts
  • 9.1.1. Physical Process
  • 9.1.2. Brillouin-Gain Spectrum
  • 9.2. Quasi-CW SBS
  • 9.2.1. Brillouin Threshold
  • 9.2.2. Polarization Effects
  • 9.2.3. Techniques for Controlling the SBS Threshold
  • 9.2.4. Experimental Results
  • 9.3. Brillouin-Fiber Amplifiers
  • 9.3.1. Gain Saturation
  • 9.3.2. Amplifier Design and Applications
  • 9.4. SBS Dynamics
  • 9.4.1. Coupled Amplitude Equations
  • 9.4.2. SBS with Q-Switched Pulses
  • 9.4.3. SBS-Induced Index Changes
  • 9.4.4. Relaxation Oscillations
  • 9.4.5. Modulation Instability and Chaos.
  • Note continued: 9.5. Brillouin-Fiber Lasers
  • 9.5.1. CW Operation
  • 9.5.2. Pulsed Operation
  • Problems
  • References
  • ch. 10 Four-Wave Mixing
  • 10.1. Origin of Four-Wave Mixing
  • 10.2. Theory of Four-Wave Mixing
  • 10.2.1. Coupled Amplitude Equations
  • 10.2.2. Approximate Solution
  • 10.2.3. Effect of Phase Matching
  • 10.2.4. Ultrafast Four-Wave Mixing
  • 10.3. Phase-Matching Techniques
  • 10.3.1. Physical Mechanisms
  • 10.3.2. Phase Matching in Multimode Fibers
  • 10.3.3. Phase Matching in Single-Mode Fibers
  • 10.3.4. Phase Matching in Birefringent Fibers
  • 10.4. Parametric Amplification
  • 10.4.1. Review of Early Work
  • 10.4.2. Gain Spectrum and Its Bandwidth
  • 10.4.3. Single-Pump Configuration
  • 10.4.4. Dual-Pump Configuration
  • 10.4.5. Effects of Pump Depletion
  • 10.5. Polarization Effects
  • 10.5.1. Vector Theory of Four-Wave Mixing
  • 10.5.2. Polarization Dependence of Parametric Gain
  • 10.5.3. Linearly and Circularly Polarized Pumps.
  • Note continued: 10.5.4. Effect of Residual Fiber Birefringence
  • 10.6. Applications of Four-Wave Mixing
  • 10.6.1. Parametric Oscillators
  • 10.6.2. Ultrafast Signal Processing
  • 10.6.3. Quantum Correlation and Noise Squeezing
  • 10.6.4. Phase-Sensitive Amplification
  • Problems
  • References
  • ch. 11 Highly Nonlinear Fibers
  • 11.1. Nonlinear Parameter
  • 11.1.1. Units and Values of n2
  • 11.1.2. SPM-Based Techniques
  • 11.1.3. XPM-Based Technique
  • 11.1.4. FWM-Based Technique
  • 11.1.5. Variations in n2 Values
  • 11.2. Fibers with Silica Cladding
  • 11.3. Tapered Fibers with Air Cladding
  • 11.4. Microstructured Fibers
  • 11.4.1. Design and Fabrication
  • 11.4.2. Modal and Dispersive Properties
  • 11.4.3. Hollow-Core Photonic Crystal Fibers
  • 11.4.4. Bragg Fibers
  • 11.5. Non-Silica Fibers
  • 11.5.1. Lead-Silicate Fibers
  • 11.5.2. Chalcogenide Fibers
  • 11.5.3. Bismuth-Oxide Fibers
  • 11.6. Pulse Propagation in Narrow-Core Fibers
  • 11.6.1. Vectorial Theory.
  • Note continued: 11.6.2. Frequency-Dependent Mode Profiles
  • Problems
  • References
  • ch. 12 Novel Nonlinear Phenomena
  • 12.1. Soliton Fission and Dispersive Waves
  • 12.1.1. Fission of Second- and Higher-Order Solitons
  • 12.1.2. Generation of Dispersive Waves
  • 12.2. Intrapulse Raman Scattering
  • 12.2.1. Enhanced RIFS Through Soliton Fission
  • 12.2.2. Cross-correlation Technique
  • 12.2.3. Wavelength Tuning through RIFS
  • 12.2.4. Effects of Birefringence
  • 12.2.5. Suppression of Raman-Induced Frequency Shifts
  • 12.2.6. Soliton Dynamics Near a Zero-Dispersion Wavelength
  • 12.2.7. Multipeak Raman Solitons
  • 12.3. Four-Wave Mixing
  • 12.3.1. Role of Fourth-Order Dispersion
  • 12.3.2. Role of Fiber Birefringence
  • 12.3.3. Parametric Amplifiers and Wavelength Converters
  • 12.3.4. Tunable Fiber-Optic Parametric Oscillators
  • 12.4. Second-Harmonic Generation
  • 12.4.1. Physical Mechanisms
  • 12.4.2. Thermal Poling and Quasi-Phase Matching
  • 12.4.3. SHG Theory.
  • Note continued: 12.5. Third-Harmonic Generation
  • 12.5.1. THG in Highly Nonlinear Fibers
  • 12.5.2. Effects of Group-Velocity Mismatch
  • 12.5.3. Effects of Fiber Birefringence
  • Problems
  • References
  • ch. 13 Supercontinuum Generation
  • 13.1. Pumping with Picosecond Pulses
  • 13.1.1. Nonlinear Mechanisms
  • 13.1.2. Experimental Progress After 2000
  • 13.2. Pumping with Femtosecond Pulses
  • 13.2.1. Microstructured Silica Fibers
  • 13.2.2. Microstructured Nonsilica Fibers
  • 13.3. Temporal and Spectral Evolutions
  • 13.3.1. Numerical Modeling of Supercontinuum
  • 13.3.2. Role of Cross-Phase Modulation
  • 13.3.3. XPM-Induced Trapping
  • 13.3.4. Role of Four-Wave Mixing
  • 13.4. CW or Quasi-CW Pumping
  • 13.4.1. Nonlinear Mechanisms
  • 13.4.2. Experimental Progress
  • 13.5. Polarization Effects
  • 13.5.1. Birefringent Microstructured Fibers
  • 13.5.2. Nearly Isotropic Fibers
  • 13.5.3. Nonlinear Polarization Rotation in Isotropic Fibers
  • 13.6. Coherence Properties.
  • Note continued: 13.6.1. Spectral-Domain Degree of Coherence
  • 13.6.2. Techniques for Improving Coherence
  • 13.6.3. Spectral Incoherent Solitons
  • 13.7. Optical Rogue Waves
  • 13.7.1.L-Shaped Statistics of Pulse-to-Pulse Fluctuations
  • 13.7.2. Techniques for Controlling Rogue-Wave Statistics
  • 13.7.3. Modulation Instability Revisited
  • Problems
  • References.