Big data analytics for large-scale multimedia search /

Saved in:
Bibliographic Details
Main Authors: Vrochidis, Stefanos, 1975- (Author), Huet, Benoit (Author), Chang, Edward Y. (Author), Kompatsiaris, Yiannis (Author)
Format: Electronic eBook
Language:English
Published: Hoboken, NJ : Wiley, 2019.
Subjects:
Online Access:CONNECT

MARC

LEADER 00000nam a2200000 i 4500
001 in00006105639
006 m o d
007 cr |||||||||||
008 180804s2019 nju ob 001 0 eng
005 20240124154730.4
010 |a  2018037546 
020 |a 9781119376996 
020 |a 9781119377009  |q (electronic bk.) 
020 |a 1119377005  |q (electronic bk.) 
020 |a 1119376998  |q (electronic bk.) 
020 |a 9781119376989  |q (electronic bk.) 
020 |a 111937698X  |q (electronic bk.) 
020 |z 9781119376972  |q (hardcover) 
035 |a (NhCcYBP)e80fa363d91f485b9a695405a0a7a4bb9781119376996 
035 |a 1wileyeba9781119376996 
037 |a 9781119377009  |b Wiley 
040 |a DLC  |b eng  |e rda  |c DLC 
050 1 0 |a QA76.9.D343  |b V76 2019 
082 0 0 |a 005.7  |2 23 
100 1 |a Vrochidis, Stefanos,  |d 1975-  |e author. 
245 1 0 |a Big data analytics for large-scale multimedia search /  |c Stefanos Vrochidis, Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece, Benoit B. Huet, EURECOM, Sophia-Antipolis, France, Edward Y. Chang, HTC Research & Healthcare San Francisco, USA, Ioannis Kompatsiaris, Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece. 
264 1 |a Hoboken, NJ :  |b Wiley,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Wiley EBA  |5 TMurS 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed March 29, 2019) 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Title Page; Copyright; Contents; Introduction; List of Contributors; About the Companion Website; Part I Feature Extraction from Big Multimedia Data; Chapter 1 Representation Learning on Large and Small Data; 1.1 Introduction; 1.2 Representative Deep CNNs; 1.2.1 AlexNet; 1.2.1.1 ReLU Nonlinearity; 1.2.1.2 Data Augmentation; 1.2.1.3 Dropout; 1.2.2 Network in Network; 1.2.2.1 MLP Convolutional Layer; 1.2.2.2 Global Average Pooling; 1.2.3 VGG; 1.2.3.1 Very Small Convolutional Filters; 1.2.3.2 Multi-scale Training; 1.2.4 GoogLeNet; 1.2.4.1 Inception Modules; 1.2.4.2 Dimension Reduction 
505 8 |a 1.2.5 ResNet1.2.5.1 Residual Learning; 1.2.5.2 Identity Mapping by Shortcuts; 1.2.6 Observations and Remarks; 1.3 Transfer Representation Learning; 1.3.1 Method Specifications; 1.3.2 Experimental Results and Discussion; 1.3.2.1 Results of Transfer Representation Learning for OM; 1.3.2.2 Results of Transfer Representation Learning for Melanoma; 1.3.2.3 Qualitative Evaluation: Visualization; 1.3.3 Observations and Remarks; 1.4 Conclusions; References; Chapter 2 Concept-Based and Event-Based Video Search in Large Video Collections; 2.1 Introduction 
505 8 |a 2.2 Video preprocessing and Machine Learning Essentials2.2.1 Video Representation; 2.2.2 Dimensionality Reduction; 2.3 Methodology for Concept Detection and Concept-Based Video Search; 2.3.1 Related Work; 2.3.2 Cascades for Combining Different Video Representations; 2.3.2.1 Problem Definition and Search Space; 2.3.2.2 Problem Solution; 2.3.3 Multi-Task Learning for Concept Detection and Concept-Based Video Search; 2.3.4 Exploiting Label Relations; 2.3.5 Experimental Study; 2.3.5.1 Dataset and Experimental Setup; 2.3.5.2 Experimental Results; 2.3.5.3 Computational Complexity 
505 8 |a 2.4 Methods for Event Detection and Event-Based Video Search2.4.1 Related Work; 2.4.2 Learning from Positive Examples; 2.4.3 Learning Solely from Textual Descriptors: Zero-Example Learning; 2.4.4 Experimental Study; 2.4.4.1 Dataset and Experimental Setup; 2.4.4.2 Experimental Results: Learning from Positive Examples; 2.4.4.3 Experimental Results: Zero-Example Learning; 2.5 Conclusions; 2.6 Acknowledgments; References; Chapter 3 Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety; 3.1 Introduction; 3.2 Scalability through Parallelization 
505 8 |a 3.2.1 Process Parallelization3.2.2 Data Parallelization; 3.3 Scalability through Feature Engineering; 3.3.1 Feature Reduction through Spatial Transformations; 3.3.2 Laplacian Matrix Representation; 3.3.3 Parallel latent Dirichlet allocation and bag of words; 3.4 Deep Learning-Based Feature Learning; 3.4.1 Adaptability that Conquers both Volume and Velocity; 3.4.2 Convolutional Neural Networks; 3.4.3 Recurrent Neural Networks; 3.4.4 Modular Approach to Scalability; 3.5 Benchmark Studies; 3.5.1 Dataset; 3.5.2 Spectrogram Creation; 3.5.3 CNN-Based Feature Extraction; 3.5.4 Structure of the CNNs 
650 0 |a Multimedia data mining. 
650 0 |a Big data. 
700 1 |a Huet, Benoit,  |e author. 
700 1 |a Chang, Edward Y.,  |e author. 
700 1 |a Kompatsiaris, Yiannis,  |e author. 
730 0 |a WILEYEBA 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://onlinelibrary.wiley.com/book/10.1002/9781119376996  |z CONNECT  |3 Wiley  |t 0 
949 |a ho0 
975 |p Wiley UBCM Online Book All Titles thru 2023 
976 |a 6006612 
998 |a wi  |d z 
999 f f |s dad5d5e4-2959-4fee-9086-076e50d25610  |i dad5d5e4-2959-4fee-9086-076e50d25610  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 0  |e QA76.9.D343 V76 2019  |h Library of Congress classification