Smart grid communication infrastructures : big data, cloud computing, and security /

A COMPREHENSIVE RESOURCE COVERING ALL THE KEY AREAS OF SMART GRID COMMUNICATION INFRASTRUCTURES Smart grid is a transformational upgrade to the traditional power grid that adds communication capabilities, intelligence and modern control. Smart Grid Communication Infrastructures is a comprehensive gu...

Full description

Saved in:
Bibliographic Details
Main Authors: Ye, Feng, 1989- (Author), Qian, Yi, 1962- (Author), Hu, Rose Qingyang (Author)
Format: Electronic eBook
Language:English
Published: Hoboken, NJ : John Wiley & Sons, 2018.
Subjects:
Online Access:CONNECT
Table of Contents:
  • 1 Background of the Smart Grid 1
  • 1.1 Motivations and Objectives of the Smart Grid 1
  • 1.1.1 Better Renewable Energy Resource Adaption 2
  • 1.1.2 Grid Operation Efficiency Advancement 3
  • 1.1.3 Grid Reliability and Security Improvement 4
  • 1.2 Smart Grid Communications Architecture 5
  • 1.2.1 Conceptual Domain Model 6
  • 1.2.2 Two-Way Communications Network 7
  • 1.3 Applications and Requirements 9
  • 1.3.1 Demand Response 9
  • 1.3.2 Advanced Metering Infrastructure 10
  • 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11
  • 1.3.4 Communication Networks and Cybersecurity 12
  • 1.4 The Rest of the Book 13
  • 2 Smart Grid Communication Infrastructures 15
  • 2.1 An ICT Framework for the Smart Grid 15
  • 2.1.1 Roles and Benefits of an ICT Framework 15
  • 2.1.2 An Overview of the Proposed ICT Framework 16
  • 2.2 Entities in the ICT Framework 18
  • 2.2.1 Internal Data Collectors 18
  • 2.2.2 Control Centers 20
  • 2.2.3 Power Generators 22
  • 2.2.4 External Data Sources 23
  • 2.3 Communication Networks and Technologies 23
  • 2.3.1 Private and Public Networks 23
  • 2.3.2 Communication Technologies 25
  • 2.4 Data Communication Requirements 30
  • 2.4.1 Latency and Bandwidth 31
  • 2.4.2 Interoperability 32
  • 2.4.3 Scalability 32
  • 2.4.4 Security 32
  • 2.5 Summary 33
  • 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35
  • 3.1 Overview of the Proposed NAN 35
  • 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35
  • 3.1.2 Structure of the Proposed NAN 37
  • 3.2 Preliminaries 38
  • 3.2.1 Charging Rate Estimate 39
  • 3.2.2 Battery-Related Issues 40
  • 3.2.3 Path Loss Model 41
  • 3.3 Problem Formulations and Solutions in the NAN Design 44
  • 3.3.1 The Cost Minimization Problem 44
  • 3.3.2 Optimal Number of Gateways 48
  • 3.3.3 Geographical Deployment Problem for Gateway DAPs 51
  • 3.3.4 Global Uplink Transmission Power Efficiency 54
  • 3.4 Numerical Results 56
  • 3.4.1 Evaluation of the Optimal Number of Gateways 56
  • 3.4.2 Evaluation of the Global Power Efficiency 56.
  • 3.4.3 Evaluation of the Global Uplink Transmission Rates 58
  • 3.4.4 Evaluation of the Global Power Consumption 59
  • 3.4.5 Evaluation of the Minimum Cost Problem 59
  • 3.5 Case Study 63
  • 3.6 Summary 65
  • 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67
  • 4.1 Background and RelatedWork 67
  • 4.1.1 Motivations and Background 67
  • 4.1.2 RelatedWork 69
  • 4.2 SystemModel 70
  • 4.3 Preliminaries 71
  • 4.3.1 Mathematical Formulation 72
  • 4.3.2 Energy Efficiency Utility Function 73
  • 4.4 Hierarchical Uplink Transmission Power Control Scheme 75
  • 4.4.1 DGD Level Game 76
  • 4.4.2 BGD Level Game 77
  • 4.5 Analysis of the Proposed Schemes 78
  • 4.5.1 Estimation of B and D 78
  • 4.5.2 Analysis of the Proposed Stackelberg Game 80
  • 4.5.3 Algorithms to Approach NE and SE 84
  • 4.6 Numerical Results 85
  • 4.6.1 Simulation Settings 85
  • 4.6.2 Estimate of D and B 86
  • 4.6.3 Data Rate Reliability Evaluation 87
  • 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88
  • 4.7 Summary 90
  • 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91
  • 5.1 Background and RelatedWork 91
  • 5.1.1 Background and Motivation 91
  • 5.1.2 RelatedWork 93
  • 5.2 Network Model 94
  • 5.3 Problem Formulation 96
  • 5.4 Proposed Power Allocation Schemes 99
  • 5.4.1 Minimizing Total Power Usage 100
  • 5.4.2 Maximizing Power Efficiency 101
  • 5.4.3 Uniform Delay 104
  • 5.4.4 Uniform Transmission Rate 104
  • 5.5 Distributed Power Allocation Schemes 105
  • 5.6 Numerical Results and A Case Study 107
  • 5.6.1 Simulation Settings 107
  • 5.6.2 Comparison of the Centralized Schemes 108
  • 5.6.3 Case Study 111
  • 5.7 Summary 113
  • 6 A Real-Time Information-Based Demand-Side Management System 115
  • 6.1 Background and RelatedWork 115
  • 6.1.1 Background 115
  • 6.1.2 RelatedWork 117
  • 6.2 System Model 118
  • 6.2.1 The Demand-Side Power Management System 118
  • 6.2.2 MathematicalModeling 120
  • 6.2.3 Energy Cost and Unit Price 122.
  • 6.3 Centralized DR Approaches 124
  • 6.3.1 Minimize Peak-to-Average Ratio 124
  • 6.3.2 Minimize Total Cost of Power Generation 125
  • 6.4 GameTheoretical Approaches 128
  • 6.4.1 Formulated Game 128
  • 6.4.2 GameTheoretical Approach 1: Locally Computed Smart Pricing 129
  • 6.4.3 GameTheoretical Approach 2: Semifixed Smart Pricing 131
  • 6.4.4 Mixed Approach: Mixed GA1 and GA2 132
  • 6.5 Precision and Truthfulness of the Proposed DR System 132
  • 6.6 Numerical and Simulation Results 132
  • 6.6.1 Settings 132
  • 6.6.2 Comparison of 1, 2 and GA1 135
  • 6.6.3 Comparison of Different Distributed Approaches 136
  • 6.6.4 The Impact from Energy Storage Unit 141
  • 6.6.5 The Impact from Increasing Renewable Energy 143
  • 6.7 Summary 145
  • 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations 147
  • 7.1 Background and RelatedWork 147
  • 7.1.1 Background and Overview 147
  • 7.1.2 RelatedWork 149
  • 7.2 System Model 150
  • 7.2.1 Overview of the Studied System 150
  • 7.2.2 Mathematical Formulation 151
  • 7.2.3 Customer Estimation 152
  • 7.3 Load Scheduling Schemes for BESs 154
  • 7.3.1 Constraints for a BES si 154
  • 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156
  • 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156
  • 7.3.4 GameTheoretical Approach 159
  • 7.4 Simulation Analysis and Results 161
  • 7.4.1 Settings for the Simulations 161
  • 7.4.2 Impact of the Proposed DSM on PAR 163
  • 7.4.3 Evaluation of BESs Equipment Settings 164
  • 7.4.3.1 Number of Charging Ports 164
  • 7.4.3.2 Maximum Number of Fully Charged Batteries 164
  • 7.4.3.3 Preparation at the Beginning of Each Day 165
  • 7.4.3.4 Impact on PAR from BESs 166
  • 7.4.4 Evaluations of the GameTheoretical Approach 167
  • 7.5 Summary 169
  • 8 Big Data Analytics and Cloud Computing in the Smart Grid 171
  • 8.1 Background and Motivation 171
  • 8.1.1 Big Data Era 171
  • 8.1.2 The Smart Grid and Big Data 173
  • 8.2 Pricing and Energy Forecasts in Demand Response 174.
  • 8.2.1 An Overview of Pricing and Energy Forecasts 174
  • 8.2.2 A Case Study of Energy Forecasts 176
  • 8.3 Attack Detection 179
  • 8.3.1 An Overview of Attack Detection in the Smart Grid 179
  • 8.3.2 Current Problems and Techniques 180
  • 8.4 Cloud Computing in the Smart Grid 182
  • 8.4.1 Basics of Cloud Computing 182
  • 8.4.2 Advantages of Cloud Computing in the Smart Grid 183
  • 8.4.3 A Cloud Computing Architecture for the Smart Grid 184
  • 8.5 Summary 185
  • 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187
  • 9.1 Background and RelatedWork 187
  • 9.1.1 Motivation and Background 187
  • 9.1.2 RelatedWork 189
  • 9.2 Preliminaries 190
  • 9.2.1 Classic Centralized Learning Scheme 190
  • 9.2.2 Supervised LearningModels 191
  • 9.2.2.1 Supervised Regression Learning Model 191
  • 9.2.2.2 Regularization Term 191
  • 9.2.3 Security Model 192
  • 9.3 Secure Data Learning Scheme 193
  • 9.3.1 Data Learning Scheme 193
  • 9.3.2 The Proposed Security Scheme 194
  • 9.3.2.1 Privacy Scheme 194
  • 9.3.2.2 Identity Protection 195
  • 9.3.3 Analysis of the Learning Process 197
  • 9.3.4 Analysis of the Security 197
  • 9.4 Smart Metering Data Set Analysis-A Case Study 198
  • 9.4.1 Smart Grid AMI and Metering Data Set 198
  • 9.4.2 Regression Study 200
  • 9.5 Conclusion and FutureWork 203
  • 10 Security Challenges in the Smart Grid Communication Infrastructure 205
  • 10.1 General Security Challenges 205
  • 10.1.1 Technical Requirements 205
  • 10.1.2 Information Security Domains 207
  • 10.1.3 Standards and interoperability 207
  • 10.2 Logical Security Architecture 207
  • 10.2.1 Key Concepts and Assumptions 207
  • 10.2.2 Logical Interface Categories 209
  • 10.3 Network Security Requirements 210
  • 10.3.1 Utility-Owned Private Networks 210
  • 10.3.2 Public Networks in the Smart Grid 212
  • 10.4 Classification of Attacks 213
  • 10.4.1 Component-Based Attacks 213
  • 10.4.2 Protocol-Based Attacks 214
  • 10.5 Existing Security Solutions 215
  • 10.6 Standardization and Regulation 216.
  • 10.6.1 Commissions and Considerations 217
  • 10.6.2 Selected Standards 217
  • 10.7 Summary 219
  • 11 Security Schemes for AMI Private Networks 221
  • 11.1 Preliminaries 221
  • 11.1.1 Security Services 221
  • 11.1.2 Security Mechanisms 222
  • 11.1.3 Notations of the Keys Used inThis Chapter 223
  • 11.2 Initial Authentication 223
  • 11.2.1 An Overview of the Proposed Authentication Process 223
  • 11.2.1.1 DAP Authentication Process 224
  • 11.2.1.2 Smart Meter Authentication Process 225
  • 11.2.2 The Authentication Handshake Protocol 226
  • 11.2.3 Security Analysis 229
  • 11.3 Proposed Security Protocol in Uplink Transmissions 230
  • 11.3.1 Single-Traffic Uplink Encryption 231
  • 11.3.2 Multiple-Traffic Uplink Encryption 232
  • 11.3.3 Decryption Process in Uplink Transmissions 233
  • 11.3.4 Security Analysis 235
  • 11.4 Proposed Security Protocol in Downlink Transmissions 235
  • 11.4.1 Broadcast Control Message Encryption 236
  • 11.4.2 One-to-One Control Message Encryption 236
  • 11.4.3 Security Analysis 237
  • 11.5 Domain Secrets Update 238
  • 11.5.1 AS Public/Private Keys Update 238
  • 11.5.2 Active Secret Key Update 238
  • 11.5.3 Preshared Secret Key Update 239
  • 11.6 Summary 239
  • 12 Security Schemes for Smart Grid Communications over Public Networks 241
  • 12.1 Overview of the Proposed Security Schemes 241
  • 12.1.1 Background and Motivation 241
  • 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242
  • 12.2 Proposed ID-Based Scheme 244
  • 12.2.1 Preliminaries 244
  • 12.2.2 Identity-Based Signcryption 245
  • 12.2.2.1 Setup 245
  • 12.2.2.2 Keygen 245
  • 12.2.2.3 Signcryption 246
  • 12.2.2.4 Decryption 246
  • 12.2.2.5 Verification 246
  • 12.2.3 Consistency of the Proposed IBSC Scheme 247
  • 12.2.4 Identity-Based Signature 247
  • 12.2.4.1 Signature 248
  • 12.2.4.2 Verification 248
  • 12.2.5 Key Distribution and Symmetrical Cryptography 248
  • 12.3 Single Proxy Signing Rights Delegation 249
  • 12.3.1 Certificate Distribution by the Local Control Center 249.
  • 12.3.2 Signing Rights Delegation by the PKG 250
  • 12.3.3 Single Proxy Signature 250
  • 12.4 Group Proxy Signing Rights Delegation 251
  • 12.4.1 Certificate Distribution 251
  • 12.4.2 Partial Signature 251
  • 12.4.3 Group Signature 251
  • 12.5 Security Analysis of the Proposed Schemes 252
  • 12.5.1 Assumptions for Security Analysis 252
  • 12.5.2 Identity-Based Encryption Security 253
  • 12.5.2.1 Security Model 253
  • 12.5.2.2 Security Analysis 253
  • 12.5.3 Identity-Based Signature Security 255
  • 12.5.3.1 Security Models 255
  • 12.5.3.2 Security Analysis 256
  • 12.6 Performance Analysis of the Proposed Schemes 258
  • 12.6.1 Computational Complexity of the Proposed Schemes 258
  • 12.6.2 Choosing Bilinear Paring Functions 259
  • 12.6.3 Numerical Results 260
  • 12.7 Conclusion 261
  • 13 Open Issues and Possible Future Research Directions 263
  • 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263
  • 13.2 Quality-of-Service Framework 263
  • 13.3 Optimal Network Design 264
  • 13.4 Better Involvement of Green Energy 265
  • 13.5 Need for Secure Communication Network Infrastructure 265
  • 13.6 Electrical Vehicles 265
  • Reference 267
  • Index 287.